Blame view

data/customer1/ingest_customer1.py 7.04 KB
be52af70   tangwang   first commit
1
2
3
4
5
6
7
8
9
10
11
  #!/usr/bin/env python3
  """
  Customer1 data ingestion script.
  
  Loads data from CSV and indexes into Elasticsearch with embeddings.
  """
  
  import sys
  import os
  import pandas as pd
  import argparse
3a950275   tangwang   导入测试数据
12
  from typing import Optional
be52af70   tangwang   first commit
13
  
3a950275   tangwang   导入测试数据
14
15
16
  # Add parent directory to path (go up 3 levels: customer1 -> data -> SearchEngine -> root)
  project_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
  sys.path.insert(0, project_root)
be52af70   tangwang   first commit
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
  
  from config import ConfigLoader
  from utils import ESClient, get_connection_from_config
  from indexer import DataTransformer, IndexingPipeline
  from embeddings import BgeEncoder, CLIPImageEncoder
  
  
  def load_csv_data(csv_path: str, limit: Optional[int] = None) -> pd.DataFrame:
      """
      Load data from CSV file.
  
      Args:
          csv_path: Path to CSV file
          limit: Maximum number of rows to load (None for all)
  
      Returns:
          DataFrame with data
      """
      print(f"[Ingestion] Loading data from: {csv_path}")
  
      df = pd.read_csv(csv_path)
  
      if limit:
          df = df.head(limit)
  
      print(f"[Ingestion] Loaded {len(df)} rows")
      print(f"[Ingestion] Columns: {df.columns.tolist()}")
  
      return df
  
  
  def main():
      """Main ingestion function."""
      parser = argparse.ArgumentParser(description='Ingest customer1 data into Elasticsearch')
      parser.add_argument('--config', default='customer1', help='Customer config name')
      parser.add_argument('--csv', default='data/customer1/goods_with_pic.5years_congku.csv.shuf.1w',
                         help='Path to CSV data file')
      parser.add_argument('--limit', type=int, help='Limit number of documents to index')
      parser.add_argument('--batch-size', type=int, default=100, help='Batch size for processing')
      parser.add_argument('--recreate-index', action='store_true', help='Recreate index if exists')
      parser.add_argument('--es-host', default='http://localhost:9200', help='Elasticsearch host')
3a950275   tangwang   导入测试数据
58
59
      parser.add_argument('--es-username', default=None, help='Elasticsearch username (or set ES_USERNAME env var)')
      parser.add_argument('--es-password', default=None, help='Elasticsearch password (or set ES_PASSWORD env var)')
be52af70   tangwang   first commit
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
      parser.add_argument('--skip-embeddings', action='store_true', help='Skip embedding generation')
      args = parser.parse_args()
  
      print("="*60)
      print("Customer1 Data Ingestion")
      print("="*60)
  
      # Load configuration
      print(f"\n[1/6] Loading configuration: {args.config}")
      config_loader = ConfigLoader("config/schema")
      config = config_loader.load_customer_config(args.config)
  
      # Validate configuration
      errors = config_loader.validate_config(config)
      if errors:
          print(f"Configuration validation failed:")
          for error in errors:
              print(f"  - {error}")
          return 1
  
      print(f"Configuration loaded successfully")
      print(f"  - Index: {config.es_index_name}")
      print(f"  - Fields: {len(config.fields)}")
      print(f"  - Indexes: {len(config.indexes)}")
  
      # Initialize Elasticsearch client
      print(f"\n[2/6] Connecting to Elasticsearch: {args.es_host}")
3a950275   tangwang   导入测试数据
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
      
      # Get credentials: prioritize command-line args, then environment variables, then .env file
      es_username = args.es_username
      es_password = args.es_password
      
      # If not provided via args, try to load from .env file via env_config
      if not es_username or not es_password:
          try:
              from config.env_config import get_es_config
              es_config = get_es_config()
              es_username = es_username or es_config.get('username')
              es_password = es_password or es_config.get('password')
          except Exception:
              # Fallback to environment variables
              es_username = es_username or os.getenv('ES_USERNAME')
              es_password = es_password or os.getenv('ES_PASSWORD')
      
      # Create ES client with credentials if available
      if es_username and es_password:
          print(f"  Using authentication: {es_username}")
          es_client = ESClient(hosts=[args.es_host], username=es_username, password=es_password)
      else:
          print(f"  Warning: No authentication credentials found")
          print(f"  Attempting connection without authentication (will fail if ES requires auth)")
          es_client = ESClient(hosts=[args.es_host])
be52af70   tangwang   first commit
112
113
114
  
      if not es_client.ping():
          print("Failed to connect to Elasticsearch")
3a950275   tangwang   导入测试数据
115
116
117
118
119
120
          print("\nTroubleshooting:")
          print("  1. Check if Elasticsearch is running: curl http://localhost:9200")
          print("  2. If ES requires authentication, provide credentials:")
          print("     - Use --es-username and --es-password arguments, or")
          print("     - Set ES_USERNAME and ES_PASSWORD environment variables")
          print("  3. Verify the host URL is correct: --es-host")
be52af70   tangwang   first commit
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
          return 1
  
      print("Connected to Elasticsearch successfully")
  
      # Load data
      print(f"\n[3/6] Loading data from CSV")
      df = load_csv_data(args.csv, limit=args.limit)
  
      # Initialize encoders (if not skipping embeddings)
      text_encoder = None
      image_encoder = None
  
      if not args.skip_embeddings:
          print(f"\n[4/6] Initializing embedding encoders")
          print("This may take a few minutes on first run (downloading models)...")
  
          try:
              text_encoder = BgeEncoder()
              print("Text encoder initialized")
          except Exception as e:
              print(f"Warning: Failed to initialize text encoder: {e}")
              print("Continuing without text embeddings...")
  
          try:
              image_encoder = CLIPImageEncoder()
              print("Image encoder initialized")
          except Exception as e:
              print(f"Warning: Failed to initialize image encoder: {e}")
              print("Continuing without image embeddings...")
      else:
          print(f"\n[4/6] Skipping embedding generation (--skip-embeddings)")
  
      # Initialize data transformer
      print(f"\n[5/6] Initializing data transformation pipeline")
      transformer = DataTransformer(
          config=config,
          text_encoder=text_encoder,
          image_encoder=image_encoder,
          use_cache=True
      )
  
      # Run indexing pipeline
      print(f"\n[6/6] Starting indexing pipeline")
      pipeline = IndexingPipeline(
          config=config,
          es_client=es_client,
          data_transformer=transformer,
          recreate_index=args.recreate_index
      )
  
      results = pipeline.run(df, batch_size=args.batch_size)
  
      # Print summary
      print("\n" + "="*60)
      print("Ingestion Complete!")
      print("="*60)
      print(f"Total documents: {results['total']}")
      print(f"Successfully indexed: {results['success']}")
      print(f"Failed: {results['failed']}")
      print(f"Time elapsed: {results['elapsed_time']:.2f}s")
      print(f"Throughput: {results['docs_per_second']:.2f} docs/s")
  
      if results['errors']:
          print(f"\nFirst few errors:")
          for error in results['errors'][:5]:
              print(f"  - {error}")
  
      # Verify index
      print(f"\nVerifying index...")
      doc_count = es_client.count(config.es_index_name)
      print(f"Documents in index: {doc_count}")
  
      print("\nIngestion completed successfully!")
      return 0
  
  
  if __name__ == "__main__":
      sys.exit(main())